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ABSTRACT 

Results are presented from an investigation into second-order 
compressible boundary-layer theory applicable to blunt bodies 
formulated for numerical solution in the transformed plane using 
an implicit finite difference scheme.  Various combinations of 
second-order effects (external vorticity, displacement, transverse 
curvature, longitudinal curvature, slip, and temperature jump) 
are considered for two different bodies:  a paraboloid and a hyper- 
boloid of 22.5-deg asymptotic half-angle, in a Mach 10 perfect gas 
flow under low Reynolds number conditions.  It is shown that one 
should properly interpret second-order vorticity and displacement 
in a combined sense as a vorticity-displacement interaction; nu- 
merical results indicate that such interaction is the dominate 
second-order effect on the bodies under consideration, especially 
for the hyperboloid where it becomes a first-order effect. Caution 
is advised in the application of second-order theory to such bodies 
since the asymptotic matching conditions between inner and outer 
flow fields may not remain valid as the boundary-layer grows while 
the external vortical (entropy) layer decreases in thickness. 

iii 
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NOMENCLATURE 

Unless otherwise noted, all nondlmensional quantities are 
denoted by a bar over the symbol. 

Cp     skin-friction coefficient [2T /p U  ] 

CD„    skin-friction drag coefficient referenced to base area 

CDn pressure drag coefficient referenced to base area 

Cp specific heat at constant pressure 

M^ free-stream Mach number 

N inner expansion coordinate normal to surface (N = n/erjj) 

n outer expansion coordinate normal to surface (n = n/rjj) 

P      inviscid outer flow pressure (P = P/pMU ) 

— 2 
P'     free-stream normal shock pitot pressure (P' = Po^PooUoo ^ 

Pr     Prandtl number 

-        2 
p      inner flow pressure (p = p/p^U^ ) 

-        3 
qw     wall heat flux (qw = q/pJJ^  ) 

R      inviscid outer flow density (R = R/p ) 

R-     inviscid outer flow density at edge of boundary layer 

<*e = Re/Poo> 

Re^    Reynolds number based on nose radius and free-stream 
00    conditions [p U rK/[i  ] Lroo oo N  ooJ 

r radius (f = r/rN) 

reff effective body radius (r^j = reff/
rw) 

rN nose radius 

r shock radius (rs = rg/rN) 

rw wall radius (rw = rw/rN) 

S' entropy derivative in the basic inviscid flow (S' = S'/c ) 

St     Stanton number based on free-stream conditions 
[-q /p U c (T -t ) 

Vll 
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surface distance measured from stagnation point (s - s/r-») N' 
—       2 inviscid outer flow temperature (T = T/U /c_) 

CO    yj 

T      inviscid outer flow temperature at edge of boundary layer 
<Te = Te/Uoo2/Cp) 

T      free-stream stagnation temperature (TQ = T„/U /c_) 
O O   oo    jp 

Tref   reference temperature [Cy-l)}^ T ] 

Too     free-stream temperature 

—      2 t      inner flow temperature (t = t/U /c) oo   p 

t      wall temperature 

U      inviscid outer flow tangential velocity (U = U/U^) 

Ue     inviscid outer flow tangential velocity at edge of boundary 
layer (Ue = Ve/Vj 

I 
U     free-stream velocity 

u      inner flow tangential velocity (ü = u/UM) 

V      inviscid outer flow velocity component normal to body 
surface (V - V/UM) 

v      inner flow velocity component normal to body surface 
(v = v/Uj 

Z distance along physical body axis (Z = Z/rN) 

zeff distance along effective body axis (Zeff = 
z
eff/rjj) 

y ratio of specific heats 

5 boundary-layer thickness (at u^Ug = 0.995) (5 - 5/rN^ 

r displacement thickness at stagnati 
(6j = oj/erj,) 

1/2 
e     Van Dyke's expansion parameter [d-Lref/p U r«)   ] 

0      physical body angle 

9eff   effective body angle 

K longitudinal surface curvature (* = K/rJ 

Vlll 

5*     boundary-layer displacement thickness (6* = 6*/erN) 

5      boundary-layer displacement thickness at stagnation point 
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[i. dynamic viscosity (jl ■ ^/^ref ^ 

|i  - * dynamic viscosity evaluated at reference temperature, T ^ 

£,r,    transformed Levy-Lees coordinates 

p      inner flow density (p = p/p ) 

p      free-stream density 

- 2 
TW     wall shear stress (TW - T^/p^U^ ) 

SUBSCRIPTS 

0 stagnation conditions 

1 first-order  quantity 

2 second-order  quantity 

e at the edge of the boundary layer 

eff effective body quantity 

N at the nose 

ref reference condition 

s at the shock 

w at the physical wall 

oo at free-stream conditions 

IX 
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SECTION I 
INTRODUCTION 

For several years viscous effects on sharp and blunt-nosed 
slender bodies at hypersonic speeds have been investigated, both . 
experimentally and theoretically, by the von Karman Gas Dynamics 
Facility of the Arnold Engineering Development Center [1-2]. 
These studies indicate a large viscous-induced drag increment at 
zero lift which can not be fully explained using results from 
"classical" first-order boundary-layer theory; an excellent dis- 
cussion of this limitation is given by Lewis and Whitfield [3] 
who conclude that further research is needed toward extending the 
range of applicability of thin boundary-layer theory and inclusion 
of second-order effects.  In pursuing these recommendations atten- 
tion has been directed to the second-order compressible boundary- 
layer theory derived by Van Dyke [4],  Basically, Van Dyke's 
approach involves solving first- and second-order boundary-layer 
equations which are found from the complete Navier-Stokes equa- 
tions by an expansion in inverse powers of the square-root of a 
Reynolds number.  The expansion procedure used is the method of 
inner and outer expansions and results in replacing the Navier- 
Stokes equations by two separate sets of equations, one set which 
is valid in the outer inviscid region and another set which is 
valid in the inner viscous (boundary-layer) region. By using Van 
Dyke's perturbation procedure the resulting second-order boundary- 
layer equations are linear and can be subdivided to exhibit several 
second-order boundary-layer effects, namely displacement, external 
vorticity, longitudinal curvature, transverse curvature, slip, and 
temperature jump. We are interested in applying this theory in flow 
regimes where the expansion parameter e is small but not so small 
that second-order terms in the parameter are negligible. 

Numerous authors in addition to Van Dyke, e.g., Lenard [5], 
Maslen [6], and Davis and Flügge-Lotz [7], have obtained second- 
order boundary-layer solutions which are valid only in the 
stagnation-point region.  The work by Davis and Flugge-Lotz [8] 
represents the first attempt at solution of the second-order 
boundary-layer equations in regions removed from the nose. They 
employ an implicit finite-difference method and consider all 
second-order effects so that the resultant solutions represent a 
complete first- and second-order boundary-layer theory.  They 
march the finite-difference solutions along the body surface and 
terminate them several nose radii downstream of the stagnation 
point; three different analytic bodies are considered, a parab- 
oloid, a hyperboloid (22.5° asymptotic half-angle), and a sphere. 
The case of flow over the hyperboloid exhibits strong growth of 
vorticity interaction as the computation proceeds downstream and 
indicates that the effect of vorticity interaction will become a 
first-order effect at distances far downstream from the nose. 
This result is very interesting in that significant vorticity ef- 
fects may be expected on certain slender blunt-nosed bodies which 
in turn can now be analyzed using this method. 

*Numbers in brackets refer to references on page 12. 
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SECTION II 
THEORETICAL CONSIDERATIONS AND DESCRIPTION 

OF COMPUTER PROGRAM 

In view of the ability of second-order boundary-layer theory 
to sort out the various second-order effects and their contribu- 
tion to such quantities of interest as the viscous-induced drag 
increment, considerable attention has been devoted to this mathe- 
matical model. A computer program has been formulated to solve 
the governing first- and second-order boundary-layer equations in 
physical variables using the implicit finite-difference scheme of 
Davis and Flügge-Lotz discussed previously.  Any combination of 
second-order effects may be considered for a specified body geom- 
etry; however, the pressure distribution along the body surface 
must be input to the program from a separate source, say an in- 
viscid blunt body and method of characteristics solution. 

Experience with this program has revealed several undesirable 
features connected with regions of strong boundary-layer growth 
(where an excessive number of points are used in the finite- 
difference scheme to traverse the boundary-layer).  It is inter- 
esting to note that Fannelop [9] has encountered precisely the 
same problem in treating the first-order boundary-layer equations 
with crossflow.  With this deficiency in mind, and recalling that 
it is often advantageous to work with similarity variables when 
solving the boundary-layer equations by numerical methods, it was 
decided to transform the governing first- and second-order 
boundary-layer equations using the well-known Levy-Lees trans- 
formation [lO] written in terms of first-order quantities. A 
computer program similar to that for the physical variables was 
written to solve the resultant set of transformed equations using 
a modification of the Davis and Flügge-Lotz implicit finite- 
difference scheme to account for variable step size along the 
body in the transformed plane.  Provisions were made in the pro- 
gram to allow solutions for either a Sutherland or power viscosity 
law as well as arbitrary (but constant) Prandtl number and spe- 
cific heat ratio.  The first-order stagnation point solution was 
obtained by use of a Runge-Kutta-Gill numerical integration rou- 
tine in conjunction with an iterative correction scheme; all 
second-order quantities were set. equal to zero at the stagnation 
point, and hence a forward marching of approximately twenty sta- 
tions with a very small step size was required before the second- 
order solution became valid.  Another feature included in the 
program was the capability of obtaining a first-order locally 
similar solution by setting the nonsimilar terms in the governing 
first-order equations equal to zero.  The resultant set of coupled 
ordinary nonlinear differential equations was then solved by a 
successive approximation technique coupled to the same implicit 
finite-difference scheme used for the nonsimilar case.  By this 
approach the accuracy and limitations of the oft-used locally 
similar approximation can properly be assessed using a common 
method of solution. 
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The present investigation is concerned chiefly with analyz- 
ing the various second-order boundary-layer effects on two dif- 
ferent analytic bodies of revolution, a paraboloid and a hyperb- 
oloid (22.5° asymptotic half-angle), at zero angle of attack 
under typical low density ideal gas tunnel conditions as shown in 
Table 1.  It should be noted that these bodies are identical to 
those treated by Davis and Flugge-Lotz [8], and hence the present 
work may be considered as an extension of their work to regions 
far removed from the nose under representative tunnel flow condi- 
tions.  A schematic of the physical body geometry as well as the 
effective body (physical body perturbed by the displacement thick- 
ness) is shown in Fig. 1 (Appendix I). 

As mentioned earlier the surface pressure distribution must 
be input to the program from an external source.  For the present 
work modified Newtonian theory as deduced by Lees [ll] was adopted 
for pressure prediction.  Comparison with more exact inviscid 
blunt body and method of characteristics solutions indicated that 
the modified Newtonian theory was in excellent agreement for the 
free-stream conditions and body shapes under consideration (see 
Fig. 2).  As discussed by Hayes and Probstein [12] such agreement 
should be regarded as fortuitous since apparently the centrifugal 
pressure difference across the shock layer is approximately off- 
set by the effect of the difference between shock angle and body 
angle.  In any respect the Newtonian theory is certainly attract- 
ive with respect to simplicity which will prove to be an important 
factor in treating the second-order displacement effect to be 
discussed next. 

Controversy has arisen in the past over the proper method 
for treating the second-order vorticity-displacement interaction 
effect; excellent discussions of this point may be found in the 
reviews by Van Dyke [13] and Cheng [l4j.  Following Van Dyke [15] 
one is free to choose either a "displacement speed" or "displace- 
ment pressure" treatment for the separate effects of second-order 
vorticity and displacement. Basically, the classification of 
displacement speed means that the second-order pressure gradient 
term due to vorticity interaction is treated as a vorticity ef- 
fect in the second-order tangential momentum equation while dis- 
placement pressure means that this pressure gradient term is con- 
sidered as a displacement effect.  Various authors have said that 
this term does not exist or that it is negligible, while other 
authors have said that it exists and then fail to include it. 
The question has been answered in the affirmative by Van Dyke [13] 
who shows in a very clear manner that this term does indeed exist 
and should properly be included in any second-order analysis. 
However, as speculated by Cheng [14], Van Dyke's classification 
of displacement speed should result in giving the second-order 
displacement and vorticity effects an unduly large value which is 
not representative of the actual magnitude for flows over blunt 
bodies.  That such is indeed true is shown in Appendix II where it 
is concluded that one should properly interpret second-order vor- 
ticity and displacement as a combined effect (vorticity-displacement 
interaction).  Such an approach will be followed in the present 
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work; however, results showing the separate effects of second- 
order vorticity and displacement treated in a displacement speed 
sense will also be presented.  As discussed in Appendix II this 
type of treatment is the only correct procedure for analyzing 
these separate effects using the second-order boundary-layer 
theory of Van Dyke [4]. 

As the method of Davis and Flugge-Lotz [8] used in Appendix II 
is limited in applicability to the extreme nose region of the body, 
attention has been directed toward developing a more general treat- 
ment for consideration of second-order displacement effects over 
the entire body. Appendix III presents the details of a new method 
based upon first-order inviscid theory and valid over the entire 
body.  This approach is fully compatible with the second-order 
theory of Van Dyke [4] and hence represents a valuable tool for 
numerical evaluation of second-order displacement effects. 

SECTION III 
DISCUSSION OF RESULTS 

The results presented in this paper were obtained from an in- 
vestigation into second-order boundary-layer effects on analytic 
bodies of revolution at zero angle of attack in a typical low 
density tunnel flow field.  Particular emphasis was placed upon 
studying the results of different viscosity laws, Prandtl numbers, 
and type of solution upon various quantities of interest such as 
the local skin-friction coefficient and Stanton number.  The 
author believes that only in this manner can one properly assess 
the influence of each of these parameters on the resultant solu- 
tion . 

In this examination of the effect of various viscosity laws 
upon both first- and second-order boundary-layer solutions, three 
different relations were considered:  Sutherland, square-root, and 
linear.  A comparison of these laws is shown in Fig. 3 where it is 
seen that the Sutherland law is in excellent agreement with the 
data of Hansen [16] in the temperature range of current interest. 
It is important to note that the linear law underpredicts the 
viscosity (as compared to the Sutherland value) by a substantial 
amount, approximately 60 percent maximum deviation.  The square- 
root law is seen to be a more accurate relation with respect to 
the Sutherland law; use of this law results in an overprediction 
of only 20 percent maximum.  One must keep these discrepancies in 
mind when evaluating the numerical results of this investigation 
since the choice of viscosity law influences the boundary-layer 
character to a considerable extent as will now be shown. 

In the past many boundary-layer investigations have been con- 
ducted under various assumptions, e.g., linear viscosity law, 
Pr = 1.0, locally similar solution, etc., without due considera- 
tion as to the effect of these assumptions on the resultant solu- 
tion.  An attempt has been made in the present study to define and 
clarify some of these effects by considering first-order 
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boundary-layer solutions on a common body and set of flow condi- 
tions with a common method of solution.  In this manner various 
assumptions can be isolated and properly assessed with regard to 
the resultant solution.  A paraboloid body was chosen having a cool 
wall (tw/T0 = 0.20) in conjunction with the flow conditions shown 
in Table I (Appendix IV). The results of this investigation are 
shown in Figs. 4, 5, and 6. With reference to Fig. 4, which shows the 
first-order local skin-friction coefficient as a function of sur- 
face distance, it is seen that the resultant solutions follow the 
same trend as the viscosity laws in Fig. 3, i.e., the linear law 
results in a rather severe underprediction while the square-root 
law overpredicts by a moderate amount as compared to the Suther- 
land law.  These trends are also valid with respect to the first- 
order local Stanton number as reference to Fig. 5 will show. 
Changing the Prandtl number from 0.70 to 1.0 has a very small in- 
fluence on the skin-friction coefficient and a slightly larger 
influence on the local Stanton number; note that this effect in- 
creases the local skin-friction coefficient and decreases the 
local Stanton number.  Such is reasonable when one recalls that 
the Prandtl number partially controls the ratio of viscous shear 
work to thermal heat conduction.  The effect of the locally simi- 
lar approximation is also very small as compared to the complete 
nonsimilar solution; Fig. 4 shows that the difference in type of 
solution has almost the same effect as changing the Prandtl num- 
ber in the nonsimilar solution.  However, reference to Fig. 5 
shows that the locally similar approximation results in an over- 
prediction of the local Stanton number which is very comparable 
with the full nonsimilar solution using a square-root viscosity 
law.  It is interesting to note that one of the most oft-used 
assumptions in classical boundary-layer treatments, namely linear 
viscosity law, Pr = 1.0, and locally similar solution, results in 
excellent agreement with the complete nonsimilar solution for 
Pr = 0.70 and linear viscosity law.  Such explains the success of 
many previous investigations using this type of treatment. 

One of the most sensitive boundary-layer quantities is the 
displacement thickness.  Hence, it is certainly of interest to 
examine it in some detail for the bodies and flow conditions under 
present examination.  The results for first-order displacement 
thickness are presented in Fig. 6 where the two-dimensional form 
of the first-order displacement thickness as defined by Eq. (2.33), 
Davis and Flugge-Lotz [8], has been used in all calculations. 
For comparison purposes results are presented for both the parab- 
oloid and hyperboloid bodies under both hot and cold wall condi- 
tions.  Again, the square-root law results in a moderate over- 
prediction while the linear law underpredicts by a substantial 
amount.  The large influence of Prandtl number in changing from 
0.70 to 1.0 is rather surprising; however, one must again remem- 
ber that the Prandtl number effectively controls the ratio of 
viscous shear work to thermal heat conduction and hence a change 
in Prandtl number results in a redistribution of both the velocity 
and temperature profiles which in turn control the displacement 
thickness.  One also notes a similar trend to that found pre- 
viously in changing from nonsimilar to locally similar solution, 
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namely the locally similar solution with Pr «= 0.70 agrees very 
well with the nonsimilar solution having Pr = 1.0.  Another 
interesting point to note is that the locally similar solution 
with Pr = 1.0 and linear viscosity law agrees very well with the 
nonsimilar solution having Pr = 0.70 and Sutherland viscosity 
law.  Such agreement must be regarded as fortuitous.  In com- 
paring the relative displacement thicknesses between the parab- 
oloid and hyperboloid it is seen that the paraboloid has a much 
larger value.  Furthermore, the displacement thickness growth 
rate is both larger and of different character on the paraboloid 
as compared to the hyperboloid.  Such is a direct consequence of 
the different body types with the resultant difference in surface 
pressure distributions as shown in Fig. 2.  These factors have a 
controlling influence on the first-order boundary-layer develop- 
ment and hence control the displacement thickness distribution 
as well.  Noting from Fig. 2 that the paraboloid possesses an 
always favorable pressure gradient as well as a lower pressure 
level as.compared to the hyperboloid, the above behavior is rea- 
sonable to expect since low pressure regions coupled with favor- 
able pressure gradients result in rapid boundary-layer growth.  A 
rather large wall temperature dependence is seen in Fig. 6, espe- 
cially for the paraboloid; such is to be expected. 

Turning now to consideration of second-order boundary-layer 
effects, one sees in Figs. 7 and 8 the results in terms of first- 
order and combined first- and second-order theory.  Both bodies 
under consideration are included as well as both hot and cold wall 
conditions; all second-order effects are included in the combined 
first- and second-order results so as to represent the aggregate 
departure from first-order boundary-layer theory. ¥ith reference 
to Fig. 7 several interesting features must be examined. Note 
that in the hose region (s/rjy < 1.5) the local skin-friction 
coefficient for the paraboloid is higher than for the hyperboloid 
at the same wall temperature condition.  However, such is not 
true on the aft portion of the body where the hyperboloid has the 
larger local skin-friction coefficient.  Furthermore, note that 
the first-order curves for the hyperboloid cross at s/rjj « 5.5 
and thence the cool wall has a higher local skin-friction coeffi- 
cient than does the hot wall.  Such is not the case for the 
paraboloid where the hot wall always has the higher value.  This 
phenomenon is again due to the difference in surface pressure 
distribution between the two bodies as has been discussed pre- 
viously.  The surface pressure on the hyperboloid reaches an 
essentially constant value on the aft portion of the body so that 
the boundary-layer development in this region should be similar 
to that on a flat plate.  Reference to Fig. 3 of the work by 
Van Driest [17] for compressible flow over a flat plate shows that 
indeed the skin-friction coefficient for a cold wall is higher 
than for a hot wall; thus the above premise is certainly reason- 
able to accept for explaining the apparent discrepancy in results 
for the two bodies.  Such is an extremely interesting effect 
which should occur on other types of geometry, especially the 
sphere-cone, providing that the boundary-layer remains laminar. 
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The local Stanton number distribution as shown in Fig. 8 
reveals the same trend as above, namely the local heat flux on 
the hyperboloid is higher than on the paraboloid over the aft 
portion of the body.  This is in agreement with the results of 
Fig. 7 through Reynolds analogy (Cf « St^) which should be 
applicable in this region.        °° 

One notes in Figs. 7 and 8 the striking influence of second- 
order effects, especially on the local skin-friction coefficient 
for the hyperboloid.  It is seen that the influence of all 
second-order effects included concurrently represents a pertur- 
bation on the first-order results for the paraboloid; such is 
obviously not the case for the hyperboloid where the second-order 
effects dominate by far the first-order results.  In order to 
properly interpret these results one must in turn examine each 
second-order effect considered separately over the entire body 
range of interest. Figures 9 through 12 present such information 
for both bodies under both wall conditions.  With respect to 
the increment in the local skin-friction coefficient as shown in 
Figs. 9 and 11, vorticity-displacement interaction is by far the 
dominant second-order effect.  Note that the vorticity continues 
to grow with increasing distance along the hyperboloid; however, 
as pointed out in Appendix II, one must consider vorticity and 
displacement in a combined sense (vorticity-displacement inter- 
action) when interpreting results.  Hence, the displacement effect 
will tend to cancel the vorticity effect on the aft portion of the 
hyperboloid which can be seen in the character of the resultant 
total curve.  Further, note that all other second-order quantities 
are essentially negligible (transverse curvature has a very small 
effect) with respect to their influence on the local skin-friction 
increment.  Such is not the case for the paraboloid shown in Fig. 
9. Here vorticity-displacement interaction is again the dominant 
effect; however, the other second-order effects (with the excep- 
tion of slip and temperature jump) are of importance as can be 
seen from the resultant total curve.  With regard to the local 
Stanton number increment, one sees in Figs. 10 and 12 that all 
second-order effects are of the same order of magnitude for both 
bodies. One notes that here slip and temperature jump effects 
are of importance in the nose region of both bodies.  Furthermore, 
Fig. 12 shows that vorticity-displacement interaction is rapidly 
becoming dominant on the aft portion of the hyperboloid. 

Based on the above detailed investigation into second-order 
effects, one can safely say that vorticity-displacement inter- 
action is the dominant factor in second-order boundary-layer 
theory.  However, a word of caution must be injected as to the 
applicability of second-order theory in general and the present 
results in particular.  It is assumed that the boundary-layer 
thickness is much smaller than the vortical (entropy layer) thick- 
ness so that the boundary conditions at the common boundary ob- 
tained by asymptotic matching of the two layers remain valid. 
Such may not be true on the aft portion of the body, especially 
for the hyperboloid, since the boundary layer is growing in thick- 
ness while the vortical layer is diminishing. What is needed is 
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a "swallowing-type" boundary-layer analysis or a fully viscous 
shock-layer treatment of the same problem in order to clearly 
define where second-order boundary-layer theory becomes inappli- 
cable with respect to position along the body. Such an analysis 
would permit one to properly assess the present results, espe- 
cially Fig. 7.  In this figure an interesting second-order effect 
is observed, namely the crossing of the first- and second-order 
hyperboloid curves at s/rN »4.0.  This may be due to the same 
factors as discussed previously for the crossing of the first- 
order hyperboloid curves; however, second-order theory may also 
be inapplicable in this case.  This is an excellent example where 
further research is needed before any definite conclusions can be 
reached as to the scope and range of applicability of second- 
order boundary-layer theory. 

If one accepts the applicability of the present results over 
the entire body for purposes of discussion, it is of interest to 
consider the integrated drag contributions over the bodies in 
question (20 nose radii in length).  Table II shows a comparison 
of both pressure and skin-friction drag coefficients (referenced 
to the base area of the body where s/rv = 20.0) for the cool wall 
paraboloid as influenced by viscosity law, Prandtl number, and 
type of solution.  It is seen from Table II that the pressure and 
skin-friction drag coefficients are of the same order of magnitude 
for both first- and second-order results, and hence viscous ef- 
fects are of equal importance as far as the total body drag is 
concerned.  Note that use of the linear viscosity law leads to a 
severe underprediction of the skin-friction drag (as compared to 
the Sutherland law prediction) - 31 percent for the first-order 
result and 40 percent for the combined first- and second-order 
result.  The square-root viscosity law yields a more accurate 
representation - overpredicting the skin-friction drag by only 6 
percent for the first-order and 9 percent for the combined first- 
and second-order.  Changing the Prandtl number to unity or using 
a locally similar type solution has an almost negligible influ- 
ence on the resultant skin-friction drag (less than 2 percent in- 
crease in all cases).  These differences can be traced back to 
the local skin-friction coefficient distribution as shown in 
Fig. 4 and discussed previously.  Furthermore, the differences in 
the first- and second-order drag coefficient due to pressure are 
directly related to the displacement thickness distributions 
shown in Fig. 6 since the second-order contribution to the pres- 
sure drag is computed from knowing the pressure distribution over 
the effective body (physical body perturbed by the displacement 
thickness). 

In order to clarify the results of various second-order ef- 
fects upon the total drag for both the paraboloid and hyperboloid 
bodies at both wall conditions, one must consult Table III.  Con- 
sidering the paraboloid first, note that both the first-order and 
combined first- and second-order skin-friction drag increases with 
increasing wall temperature.  With respect to the second-order 
quantities it is seen that vorticity-displacement interaction and 
transverse curvature effects are of the same order of magnitude 
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while longitudinal curvature and slip and temperature jump ef- 
fects are an order of magnitude smaller.  It is apparent that 
vorticity-displacement interaction is the dominant second-order 
effect on the skin-friction drag increment; the displacement ef- 
fect on the second-order pressure drag increment is of equal im- 
portance with respect to the magnitude of separate effects. 
Hence, the second-order results for the paraboloid may indeed be 
regarded as perturbations on the first-order results with 
vorticity-displacement interaction as the important second-order 
effect. 

Turning now to the hyperboloid, one observes several inter- 
esting differences in Table III. First, it is seen that the first- 
order and combined first- and second-order skin-friction drag 
coefficients both decrease with increasing wall temperature; this 
is due to the curve crossing shown in Fig. 7 and was discussed 
previously.  It is further noted that vorticity-displacement 
interaction is by far the dominant second-order effect, being two 
orders of magnitude larger than any of the other second-order ef- 
fects and of the same order of magnitude as the first-order solu- 
tions. In fact, the second-order vorticity-displacement interaction 
increment on the skin-friction drag coefficient is over twice the 
value of the first-order skin-friction drag coefficient alone! 
Hence, the effects of vorticity-displacement interaction are 
definitely of first-order in numerical magnitude; however, these 
results must be viewed with caution as to the applicability of 
second-order theory as discussed previously.  Again, the effects 
of longitudinal curvature and slip and temperature jump are an 
order of magnitude'less than transverse curvature and displacement 
effects and thus essentially negligible in comparison with the 
other effects.  In summary, one can safely say that the hyperb- 
oloid is certainly dominated in the second-order sense by the 
vorticity-displacement interaction effect. 

A few words should be said in conclusion as to the computer 
time requirements and character of numerical solutions for this 
investigation.  The program itself was written in FORTRAN 63 for 
solution on a CDC 1604-B computer. Computation time including 
printout for both first- and second-order equations averaged 8 
seconds per station in transformed variables as compared with 10 
seconds in physical variables - a 20-percent reduction in time 
requirements.  This time comparison is based upon sphere-cone 
geometry and not the analytic bodies reported herein; solution 
time in transformed variables for the analytic bodies also aver- 
aged 8 seconds per station with physical variable results not 
available. 

A total of 300 stations was used which resulted in a total 
time requirement of approximately 45 minutes to complete the cal- 
culations for a body of 25 nose radii in length. Using Levy-Lees 
variables results in the solution being obtained in the trans- 
formed (£,T|) plane; for the present investigation the following 
step sizes were chosen: 
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Ar| = 0.050 

A(s/iO = 0.0125, 0.0250, 
* 0.0500, 0.1000 

where a procedure for doubling the s/r^ step size at any chosen 
location was built into the program; hence the s/rjj- step size was 
doubled a total of four times over the bodies of interest in this 
work.  Such a step size change procedure is highly advantageous 
in reducing the total computing time requirements for long bodies. 
Repetition of the calculations with a halved step size in Ai\  as 
well as an increase in T|max to 9.0 showed no change in the numer- 
ical results.  That the bodies in question are essentially inde- 
pendent of the A(s/rN) step size is evidenced by the excellent 
agreement of the locally similar solution (which is independent 
of this step size).  The implicit finite-difference scheme proved 
to be inherently stable in all cases and any oscillations intro- 
duced by the second-order stagnation point treatment were quickly 
damped out. All in all, the method must be described as highly 
satisfactory in the numerical sense. 

SECTION IV 
CONCLUSIONS 

The present investigation produced the following results: 

1. The first- and second-order compressible boundary-layer 
theory of Van Dyke [4] coupled with the implicit finite- 
difference scheme of Davis and Flugge-Lotz [8] written in 
terms of transformed Levy-Lees variables is an excellent 
method for treating second-order boundary-layer effects 
(external vorticity, displacement, transverse curvature, 
longitudinal curvature, slip, and temperature jump) on 
blunt-nosed bodies of revolution. 

2. Application of this method to two analytic bodies of 
revolution, a paraboloid and a hyperboloid of 22.5° 
asymptotic half-angle, under typical low density tunnel 
conditions at M» = 10.0 in conjunction with perfect gas, 
constant specific heats, and constant Prandtl number 
(not necessarily unity) assumptions resulted in a thor- 
ough study of first- and second-order boundary-layer 
effects as influenced by viscosity law, Prandtl number, 
type of solution, body geometry, and surface pressure 
distribution. 

3. Use of a linear viscosity law results in a rather severe 
underprediction of the skin friction (and the resultant 
integrated skin-friction drag) as compared to the Suther- 
land law; the square-root viscosity law overpredicts the 
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same quantities by a slight amount, again as compared to 
the Sutherland law.  Effects of changing the Prandtl 
number from 0.70 to 1.0 are almost negligible with re- 
spect to the local skin-friction coefficient and Stanton 
number distribution on the paraboloid; this change has a 
surprising influence in increasing the displacement 
thickness of the boundary-layer over the paraboloid. 

4. Comparison of first-order locally similar solutions to 
the first-order nonsimilar solutions for the paraboloid 
shows them to be in excellent agreement with regard to 
prediction of heat-transfer and skin-friction distribu- 
tions. However, the boundary-layer displacement thick- 
ness is overpredicted by the locally similar approxima- 
tion. 

5. Wall temperature has an interesting effect on the hyper- 
boloid in that the cool wall case has a higher skin- 
friction drag, both first- and second-order, than does 
the hot wall case.  This is explained by "transition" of 
the boundary-layer to flat plate behavior on the aft 
portion of the body due to the surface pressure becoming 
constant. 

6. The separate second-order effects of vorticity and dis- 
placement must be considered in a displacement speed 
sense; a displacement pressure treatment is not consist- 
ent with the governing second-order equations and match- 
ing conditions of Van Dyke [4] in the limiting sense as 
N —"<».  However, a displacement speed treatment is un- 
reasonable with respect to the magnitude of the separate 
effects and certainly not representative of the actual 
physical effects. Hence, it is proposed that one should 
properly interpret second-order vorticity and displace- 
ment in a combined sense as a vorticity-displacement 
interaction.  Such is followed in the present investi- 
gation. 

7. A new and powerful technique for considering the second- 
order displacement effect using first-order inviscid 
theory is presented which is in complete accord with the 
second-order theory of Van Dyke [4].  This approach is 
not limited to the nose region and and may be applied 
equally well over the entire body.  For the present in- 
vestigation, modified Newtonian theory is used in con- 
junction with this new method; however, such may not be 
strictly valid in that modified Newtonian predictions do 
not necessarily represent a solution (in a mathematical 
sense) to the governing first-order outer flow equations 
of motion.  More work is needed in this area to define 
the limits of error for this type of approach. 

8. Vorticity-displacement interaction is by far the dominant 
second-order boundary-layer effect on both bodies under 

11 
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consideration.  For the paraboloid all second-order ef- 
fects may be considered as perturbations on the first- 
order solution.  This is not true on the hyperboloid 
where the second-order vorticity-displacement inter- 
action increment in the skin-friction drag is larger 
than the first-order contribution.  Caution is advisable 
in the application of second-order perturbation-type 
theory to such bodies since the asymptotic matching con- 
ditions between inner and outer flow fields may not re- 
main valid as the boundary-layer grows while the vorti- 
cal (entropy) layer decreases in thickness.  More work 
is definitely needed in order to clearly define the range 
of applicability of second-order boundary-layer theory. 
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APPENDIX II 
VORTICITY-DISPLACEMENT INTERACTION TREATMENT 

For checkout purposes using the transformed variables pro- 
gram, solutions were run for a paraboloid and hyperboloid (22.5° 
asymptotic half-angle) at y = 1.40, Pr = 0.70, and H» ""*" °° for 
wall-to-stagnation temperature ratios of 0.20 and 0.60 with a 
square-root viscosity law.  These conditions are precisely those 
used by Davis and Flügge-Lotz [8] and hence enable a direct com- 
parison with their results.  Such is extremely valuable in try- 
ing to "debug" a program of the present complexity.  The shifted 
and expanded body technique developed by Davis and Flügge-Lotz 
was used to compute the second-order effect of displacement thick- 
ness; however, this treatment is limited in applicability to the 
extreme forward portion of the body in question.  Provisions were 
made in the program for considering both displacement speed and 
displacement pressure treatments (in the terminology of Van Dyke 
[15]), and Figs. II-l and II-2 present results of these different 
treatments for vorticity and displacement effects on the parab- 
oloid with respect to second-order wall shearing stress and heat 
transfer.  It is seen that the displacement pressure treatment 
reduces the magnitude of the separate effects; this has been 
alluded to previously by various authors [8, 13, 14].  One fact 
is clear from study of these comparisons:  second-order vorticity 
and displacement should properly be interpreted as a combined 
effect (vorticity-displacement interaction) and thereby remove 
the arbitrariness as to the treatment of the separate effects. 

Shown in Fig.II-3 are the results obtained from a displace- 
ment speed and a displacement pressure treatment of second-order 
vorticity on the hyperboloid.  Based on|tthe results of a dis- 
placement speed treatment, Davis and Flugge-Lotz [8] conclude 
that the effects of vorticity on the second-order shear will con- 
tinue to grow as s increases and eventually become a first-order 
effect. However, Fig. II-3 clearly shows that these conclusions 
are not justified when interpreted in a displacement pressure 
sense.  This again points out that one should properly interpret 
vorticity and displacement in a combined sense as a vorticity- 
displacement interaction. 

At this point one may well inquire as to which treatment 
(displacement speed or displacement pressure) is more appropriate 
for examination of the separate effects since, according to 
Van Dyke [15], one is free to choose either approach.  As noted 
by Cheng [14] the displacement pressure treatment on a blunt body 
should yield results more in accord with the actual physical 
magnitude of the separate effects and hence is desirable from 
this standpoint.  That such is true has been shown by Lewis [18] 
who presents a second-order displacement pressure treatment for 
vorticity on a sphere-cone as compared to a classical first-order 
boundary-layer analysis modified to include first-order vorticity 
effects.  However, recent calculations have indicated that a 
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displacement pressure treatment for the separate effects of 
second-order vorticity and displacement fields nonunique solu- 
tions in that they are functions of the N value where the second- 
order matching conditions are applied.  It is important to note 
that even though the separate effects have nonunique solutions, 
the sum of the separate effects, i.e., vorticity plus displace- 
ment, appears to yield a unique solution independent of the loca- 
tion of matching with the outer flow.  Such is very interesting 
and has, to the best of the author's knowledge, not been pre- 
viously recognized. Furthermore, the treatment of second-order 
vorticity and displacement in a combined sense (vorticity- 
displacement interaction) results in a unique solution independent 
of the value of N.  Hence, one is forced to conclude from these 
results that a displacement pressure treatment for the separate 
effects of second-order vorticity and displacement yields a non- 
unique solution, and thus these effects should properly be con- 
sidered in a combined sense as a vorticity-displacement inter- 
action. 

That a displacement pressure treatment of the separate ef- 
fects is inappropriate does not rule out the possibility of a 
displacement speed treatment.  In fact, calculations have re- 
vealed that the separate second-order vorticity and displacement 
effects are indeed unique (independent of the N matching value) 
in a displacement speed approach.  Hence, in view of the above 
results, it appears that the only correct way to consider the 
separate effects of second-order vorticity and displacement is in 
a displacement speed sense.  Unfortunately, such a treatment re- 
sults in unduly large values for each of the separate effects 
which are not representative of the actual physical magnitude and 
hence could lead to erroneous conclusions concerning the separate 
effects.  This again points out that one should properly interpret 
second-order vorticity and displacement in a combined sense as a 
vorticity-displacement interaction. 

For one to pursue the mathematical reason behind this inter- 
esting behavior, recourse should be taken to the governing 
second-order inner flow equations as given by Eqs. (2.48-2.49), 
Van Dyke [4].  In the limiting sense as N ■— °° the second-order 
matching conditions given by Eqs. (2.39-2.40), Van Dyke [4], should 
identically satisfy these governing equations; however, examina- 
tion of these equations reveals that the only mathematically 
acceptable treatment for the separate effects of second-order vor- 
ticity and displacement is in a displacement speed sense.  This 
is easily seen by considering the separate effect of second-order 
displacement.  For this case the second-order matching conditions 
reduce to 
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U 1 

Pi 

U 2 

3U, 

at, 

)u( 

St. 

s,N)  ~ Üx (s,0) 

s,N)   ~ R^ (s,0) 

s,N)  ~ T^ (s,0) 

i,N)  ~ Ü2 (s,0) 

s,N) 

i,N) 

(s\0) 

Ci,0) 

as N-*   M 

considering 
second-order 
displacement 
only 

(II-D 

s,N)/dN ~ 0 

s,N)/dN ~ 0 

s,N)/öN ~ 0 

i,N)/oN ~ 0 

so that the second-order inner flow momentum equation becomes, 
in the limit as K -»•«. 

/  dtL     diL \   __ du, 
Ri üi -=r + ü2 -rM + R2 u -^ 1 \ x di    2 di /   2 x ds = - ?w [*12W2L 

-J n=0 

+ Rn 
d (Ü^g) 

di 

dÜ, 
+ RoU 

21 AÖ OS 

n=0 

(II-2) 

-1 5=0 

which is satisfied only if the term containing §£ (the vorticity 
contribution) is not considered as a displacement effect.  Such 
is precisely the condition for a displacement speed treatment. 
A similar argument holds with respect to the second-order inner 
flow energy equation with exactly the same conclusion regarding 
a displacement speed treatment.  Hence one is forced by the 
mathematics of the theory to consider the separate second-order 
effects of vorticity and displacement in a displacement speed 
manner - a displacement pressure treatment is mathematically in- 
consistent with respect to the imposed second-order matching con- 
ditions.  Such provides the answer to the nonuniqueness problem 
in the displacement pressure treatment discussed previously. 

In summary, one must consider the separate effects of second- 
order vorticity and displacement in a displacement speed sense - 
a displacement pressure treatment results in a nonunique solution 
for each of the separate effects.  However, a displacement speed 
treatment is unreasonable with respect to the magnitude of the 
separate effects and certainly not representative of the actual 
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physical effects.  Hence, it appears that the proper interpreta- 
tion of second-order vorticity and displacement is in a combined 
sense as a vorticity-displacement interaction and not as separate 
effects.  Such an approach is adopted in the present paper. 
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APPENDIX III 
DISPLACEMENT TREATMENT USING EFFECTIVE BODY TECHNIQUE 

The shifted and expanded body technique developed by Davis 
and Flügge-Lotz [8] and used to obtain the results presented in 
Appendix I is extremely restrictive in that it is limited in use 
to the extreme forward portion of the body.  Therefore, attention 
has been directed toward developing a more general method of 
treating the displacement effect which is valid over the entire 
body.* 

Treatment of the second-order boundary-layer displacement 
effect requires the values of the second-order outer (inviscid) 
flow pressure, temperature, density, and tangential velocity at 
the surface of the physical body, i.e., P2(s,0), T2(s,0), R2(s,0), 
and Üo(i,0).  In order to obtain these quantities, one assumes 
that the basic outer (inviscid) flow has been calculated for both 
the original physical body and the effective body defined by the 
original body plus displacement thickness using, for example, 
numerical methods for solving the blunt body problem; the details 
of this calculation will be deferred until later in the discus- 
sion. Such an assumption provides the basic outer (inviscid) 
flow quantities on the surface of the physical body, e.g., P-,(s,0) 
Tl(s,0),_etc., as well as on the surface of the effective body, 
e.g., P(s,eo"*), T(s,e<5*), etc. Following Davis and Flügge-Lotz 
[8J, PP« 23-24, each quantity, say pressure P for example, is 
expanded in a Taylor series about the original physical body sur- 
face keeping terms through order e to yield 

_ _ _       _                       dP,(s,0) 
P(s,e6*) = P,(s,0) + €P„(i,0) + ... + e5* —^-  + 1 * on 

(III-l) 

so that, solving for the second-order term, 

ÖP - 
P(s,e5*) - Pn(s,0) - eo* —1i-'0) 

P2(i,0) = i _ on     (iii_2) 

where, from Eq. (2.20) of Van Dyke [4], 

aPi(s,0)    _ 
—^ K R, (s,0) 0/ (i,0) (III-3) 

dn        1  '    1    ' 

The present method was developed by Dr. R. T. Davis, cur- 
rently at Virginia Polytechnic Institute, Blacksburg, Virginia, 
and follows the physical argument presented on pages 22-24 of the 
report by Davis and Flügge-Lotz [8j. 
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Similar procedure is followed to obtain T2(s,0), R2<s,0), and 
U2(s,0) where use of Eqs. (2.21) through (2.25), Van Dyke [4], is 
required to evaluate the normal derivative. 

That the above technique is indeed compatible with the 
second-order theory of Van Dyke [4] may be shown by substituting 
the truncated (terms through order e) series expressions into the 
first-order outer flow tangential momentum equation and treating 
the effective body surface as if it were a physical body, i.e., 

ä£!Ll$*l + R(ij66*) ü(i,eö*) MlL^Ül = o 
OS ös 

(III-4) 

which is just the conventional compressible Euler equation evalu- 
ated on the effective body surface.  Equating terms of like power 
in € and using consistency of first-order outer flow entropy and 
stagnation enthalpy along flow streamlines yields Eqs. (2.13b) and 
(2.18), Van Dyke [4], evaluated on the original body surface. 
Hence, this effective body treatment is compatible with the second- 
order theory of Van Dyke [4] and only limited by the capability of 
obtaining a valid first-order outer flow solution over the effec- 
tive body.  It should be_noted, however, that the so-derived 
second-order quantities ^(s.O), etc., are functions of e and thus 
dependent on the numerical value of €; this is in contrast to the 
shifted and expanded body treatment of Appendix II which is com- 
pletely independent of e.  Hence, the results for second-order 
displacement cannot be scaled in terms of € as can all the other 
second-order effects (which are independent of e). 

If one considers the practical details of this method, refer- 
ence to the following sketch should prove helpful in defining 
various effective body parameters. 

Effective 

—i— 
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It is assumed that the displacement thickness distribution 
along the body is known from a first-order boundary-layer solu- 
tion.  Such an assumption enables the coordinates of the effective 
body to be defined by 

r „„ = r + eö* cos Ö ef f   w 

Z „. = Z + eö* - eö* sin 6 eff   w    o 

(III-5) 

(III-6) 

which are in turn curve-fitted using a "walking" least-squares 
fit of the form 

?eff = ^eff (III-7) 

where A and B are determined in the least-squares sense.  The fit 
is designed to be "walked" along the body in that, at any given 
body station, J stations in front of and behind the given station 
are used to obtain the A and B coefficients.  For all calculations 
presented in this paper J = 3; experience has indicated that this 
value is sufficient since accurate fits through four significant 
figures to the right of the decimal have been obtained over the 
entire body. 

Differentiating Eq. (III-7) yields 

d r 
tan 9 eff d Z 

eff „ AB sB-1 
AB Zeff 

eff 

(III-8) 

which determines the slope of the effective body geometry at a 
given location.  Utilizing this information in conjunction with 
modified Newtonian theory yields the local pressure on the effec- 
tive body surface according to the relation 

P(i,eö*) - -^  cos2 6eff + P^ sin
2 6eff 

7K, 
(III-9) 

where an iteration procedure is used to locate the point of inter- 
section of the normal from the physical body to the effective body 
at a given s location.  In the above, 

X. r- —-1 
(Y + DM 

p' = J=. 
o 

7-1 
Y + 1 

2YM/ - (y - 1) 

Y-l 

(III-10) 

YM„ 

which is a modified form of the classical Rayleigh pitot formula. 
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Knowing the pressure from Eq.(III-9), one can determine the local 
tangential velocity and temperature on the effective body surface 
by 

U(s,e6*) = ) 2T, 1 - (III-ll) 

T(s,eö*) 
7,2,- .7. 

= T   U (s.efl») (111-12) 

under the restriction that the first-order outer flow be isen- 
tropic. Hence, all quantities needed in the effective body method 
discussed previously are now determined. 

At this point a word of caution must be injected with respect 
to the above treatment.  As is well-known, modified Newtonian 
theory is empirical in nature and not a mathematical solution to 
the governing first-order outer flow equations.  Hence, the first- 
order outer flow equations used in the effective body method are 
not strictly applicable for use with modified Newtonian theory 
and cannot be justified in a rigorous sense for this application. 
To be strictly correct the first-order outer flow equations should 
be solved exactly using some numerical technique, say an inviscid 
blunt body and method of characteristics solution, over the effec- 
tive body in question; such solutions have not been made in the 
present work. However, based on the agreement shown in Fig. 2, it 
is believed that modified Newtonian theory is an accurate approx- 
imation to the exact solution for the analytic bodies under con- 
sideration and hence acceptable for this application.  Neverthe- 
less, further work is needed to define the exact magnitude of this 
discrepancy. 
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APPENDIX IV 

TABLE I 

FREE-STREAM AND WALL CONDITIONS 

Mco T  a 
■GO y Pr t  /T b 

V'o 
Viscosity 

Law 
Re0Q £d 

10 1.0 m ).0 l. 40 0.70 or 

1.00 

0.20 or 
0.60 

Sutherland 400.00 0.1806 

Linear 1226.73 

< r i F ' ' 11 <' Square-Root 193.96 * i 

a 

b 

c 

d 

TQQ has units of °K. 

Constant wall temperature 

£ is the perturbation parameter defined by Eq. (2.11), 
Van Dyke [4]. 

CO 

«In 



TABLE II 

COMPARISON OF DRAG COEFFICIENTS ON PARABOLOID SHOWING EFFECTS 
OF VISCOSITY LAW, PRANDTL NUMBER. AND TYPE OF SOLUTION 

en 

Viscosity 

Law 

Prandtl 

Number 

Type of 

Solution 

1st Order 1st and 2nd Order 
(All 2nd Order Effects Included) 

S CD» 
% 

Co, 

Sutherland 0.70 Nonsimilar 0.1801 0.1045 0.2166 0.1798 

Square-Root 0.70 Nonsimilar 0.1801 0.1108 0.2193 0.1962 

Linear 0.70 Nonsimilar 0.1801 0.0725 0.2042 0.1070 

Sutherland 1.00 Nonsimilar 0.1801 a 1057 0.2217 0.1819 

Sutherland 0.70 Locally Similar 0.1801 0.1063 

Linear 1.00 Locally Similar 0.1801 0.0756 

Conditions: M^ - 10.0, e = 0.1806, y = 1.40, tw/T0 = 0.20 

> 
m 
o 
n 

In 



TABLE III 

COMPARISON OF DRAG COEFFICIENTS INCLUDING SECOND-ORDER EFFECTS 

Body 
To 

1st Order Solution 2nd Order Solution Total 

CDP 
CD, 

% 
cDf 

\ 
cDf 

DDS 
VDI; 

TC LC STJ 
VDS DDS 

Paraboloid 0.20 0.1801 0.1045 . 0.0365 
0.1403 -0.0759 

0.0100 0.0017 -0.0008 0.2166 0.1798 
0.0644 

Paraboloid 0.60 0.1801 0.1127 0.0763 
0.2744 -0.2070 

0.0148 0.0042 -0.0050 0.2564 0.1941 
0.0674 

Hyperboloid 
(22.5° Asymptote) 

0.20 0.3397 0.0708 0.0183 0.3122 -0.1557 0.0031 -g. oooi -0.0003 0.3580 0.2300 

0.1565 

Hyperboloid 
(22.5° Asymptote) 

0.60 0.3397 0.0695 0.0395 0.5991 -0.4623 0.0045 0.0005 -0.0008 0.3792 0.2105 

0.1368 

o 
n 
H 
TO 

In 

Conditions: M^ = 10.0, £ = 0.1806, y = 1.40, Pr = 0.70, Sutherland Viscosity Law 

Legend: VDS External Vorticity, Displacement Speed Treatment 
DDS Displacement, Displacement Speed Treatment 
VDI Vorticity-Displacement Interaction 
TC Transverse Curvature 
LC Longitudinal Curvature 
STJ Slip and Temperature Jump 
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